Some Additional Thoughts on the Atlatl

 

In my recent entry on the atlatl and dart, I speculated about the reason why its use faded away, and was largely supplanted by the bow and arrow. I wrote:

In fact, darts thrown by atlatls are so effective that it is interesting to speculate about why that technique was largely supplanted by the use of the bow and arrow. I suspect that it may have something to do with the declining size of prey animals. As mammoths and mastodons and the other giant megafauna became extinct, hunters had to turn to smaller, lighter prey, and it may be that the heavy firepower of an atlatl was no longer necessary.[1]

And I think that there may be some merit to that idea. Recently, however, I received correspondence from Dr. Karl Hutchings, whose work on lithic fractures in stone points has provided strong evidence that atlatls were used by the first people to enter the Americas, even though no direct evidence of atlatl use from that time has yet been found.[2]

In his letter to me, Dr. Hutchings has postulated some alternate (or additional) theories about why the bow and arrow so largely supplanted the atlatl. With his permission, I quote at length:

I also read with interest your thoughts concerning the persistence of the atlatl vs. the acceptance of bow technology.  My own thoughts on the matter are a bit different.  It may be noteworthy that recent users of the atlatl hunted small game with it.  For example, Australian Aborigines hunted small game (e.g., reptiles) with the atlatl (they call it a Woomera of course), and ducks were being hunted with the atlatl up until the 1960s in Mexico.  So I don’t think game size per se is necessarily the key factor, though it may figure into it.  Instead, I expect that the nature of the terrain (i.e., open vs. forested; rocky vs. “cushioned” [for want of a better word]) and the relative level of human aggression were important factors. 

The atlatl makes sense in open terrain where the arm motion is unrestricted, and where a long-distance, arcing trajectory is unimpeded. Under such conditions it would be especially beneficial for hunting herd animals.  But it would be effective in some other conditions as well.

The atlatl is quite effective at close range for hunting small game, but can be hampered by the nature of the “ground cover”.  In rocky terrain, one can expect a lot of broken darts regardless whether one hits the small game target, or misses entirely – in either case, the dart is going to hit the ground, since even if the target is hit, the dart will likely continue through it.  I suspect that the atlatl is not preferred in such rocky environments, but on soft (e.g., humic, marshy, sandy, or even water) terrain (like the Australian and Mexican examples), this would not be a problem.  In contrast, archers may not have experienced as significant a problem in rocky terrain due to the flatter trajectory (i.e., increased inherent accuracy), and reduced “cost” of arrows (relative to much larger darts).

The other likely factor is the relative level of human aggression.  The bow is, to a great extent, a weapon of warfare due to the low cost of projectiles, the ability to carry very large quantities of projectiles, and the ability to shoot from positions of cover.  So, in those areas where the bow was adopted due to interpersonal aggression, it may make sense to abandon the atlatl, and simply use the bow as a dual purpose weapon. 

Of course, the reasons for preferring one vs. the other are likely even more complex than this, and undoubtedly incorporate concerns of economy, ethnicity, aesthetics, and more.

Just my speculations on the issue.[3]

Dr. Hutchings’s comments highlight several aspects of my fascination with the Pleistocene period in North America.

First, Dr. Hutching’s ideas all make sense to me, and I had not considered any of them.

Second, I still think that there is merit to notion that these exceptionally skilled hunters may have adapted a lighter technology to lighter game, as the megafauna disappeared. Why continue to use heavy artillery, as it were, for lighter prey? Of course, the atlatl/dart technology could have been (and was) adapted for use on smaller animals, Dr. Hutchings noted above. Still, I think that at some point, as the darts shrank, it became just as effective and easy to use bows and arrows. This ties in with a point that Hutchings makes above – there is a lower cost to make and replace arrows than darts.

Another question is why, after bow and arrow technology was adopted, the atlatl/dart system was apparently no longer used even in against large animals in the open, grassy country that, as Hutchings notes, is optimal for it. I am thinking here about hunting bison or elk on grassland. I understand that the Paleo-Indians at this time had to hunt on foot, and it may be that they could stalk prey more effectively and make better use of cover with a bow, rather than an atlatl, which requires the highly visible standing, throwing motion. Nonetheless, large animals on open terrain remained, but for some reason, the technology shifted from atlatls to bow. Why?

Of course, one additional piece of information that might shed some light on this issue is the pattern of settlement/exploration of the continent by the first people here. What did they preferentially hunt? And where, i.e. in what type of terrain? Perhaps as the megafauna disappeared, the Paleo-Indians had to shift to hunting different game, in different terrain, and the change in terrain drove this shift in technology.

Ultimately, I suspect that there is no single explanation of this technological shift. Scarcity of good stone may have influenced knappers to make more, but smaller points – who knows?

My point here is, the fact that we know so little about life in the Americas thirteen or so thousand years ago is the very reason that it is so fascinating to me, and why I applaud creative scholars like Dr. Hutching who are doing such interesting work.

 

 

[1] “Atlatl and Dart,” February 19, 2015.

[2] Indeed, his work formed much of the basis for the “Atlatl and Dart” entry.

[3] Correspondence of February 25, 2015, from W. Karl Hutchings, Ph.D., Assistant Professor, Anthropology (Archaeology), Thompson Rivers University, Kamloops, BC V2C 5N3.

Atlatl and Dart

So you’re hungry, and you want meat, and it’s thirteen thousand years ago in North America. There are no firearms, no guns, no steel knives. How are you going to hunt something to eat? And you want something big enough for everyone in your band to eat – a rabbit won’t do. You want something big, and, therefore strong, and fierce and fearless.

Well, you think you’ve got four options: Spear; javelin; bow and arrow; atlatl and dart. But, you’re wrong, so sorry: The bow and arrow haven’t been invented yet; haven’t come into use in North America yet. So that leaves three options:

You could use a spear. A spear is a handheld thrusting device, made of a wooden shaft, tipped with a very sharp knapped point. Very nice, but of course, you’ve got to get right up next to whatever it is you’re trying to kill, and believe me, right about now, what ever it is you’re trying to kill, is trying to kill you right back.

You could hunt with a javelin. A javelin is similar to a spear, but lighter, and thrown by hand. But these big animals – the mammoths, the mastodons, all have really thick hide, and fur over that. You can wound them, maybe, irritate them, but they’ll just run off, or worse, charge you. You just don’t have the strength, the speed, the leverage to throw a javelin hard enough to really be effective.

Or you could use a dart, flung from an atlatl.

A dart? An atlatl? Huh?

Read on, dear reader, and learn more about the atlatl, and how it changed the world.

The term ‘atlatl’ has come, in recent years to be used in lieu of the former term ‘spear-thrower.” “Atlatl” itself is word from the Nahuatl language (Aztec). But whatever term is used to describe it, the atlatl is an ingenious and effective invention. It’s based on the principle of leverage. In much the same way that a lacrosse player, using his or her stick, can throw a lacrosse ball much faster and farther than by merely using his arm, an atlatl let a hunter hurl a dart much faster, farther and with much more force than by throwing a javelin.

Are you familiar with those plastic molded tennis ball throwers that you use to throw a ball for a dog? That is very similar to an atlatl, in the sense that it lengthens the arc through which the tennis ball travels before it is released. As a result, the ball gains velocity, leaves the thrower at a higher rate of speed than if you just threw it with your puny human arm, and therefore travels much faster and farther.

Same thing with an atlatl.

An atlatl is a wooden shaft, with a hook or notch at one end. The operator (you) holds the other end. The butt of a dart is hooked into the hooked end of the atlatl, and then the operator also holds the shaft of the dart, where it lines up with the handle end of the atlatl. Then the operator, you, cocks his (or her) arm back, and while retaining a firm grasp on the handle of the atlatl, releases the grip on the dart. As the arm moves forward, the momentum of the throw is transferred from the thrower’s arm to the atlatl, down the shaft of the atlatl to the butt end of the dart, and thus, the dart is propelled in a larger arc, than the arm alone could give.

060124_atlatl_deer_big

[1]

Darts were designed for use with atlatl. They are thinner, and lighter than handheld spears, and they can be long – five to seven feet in length, maybe more. They look like gigantic skinny arrows: A point at one end, and feather fletching at the other. The shaft bends and flexes in flight, and the fletching helps the dart fly true.

And it really works. The atlatl can propel the dart at speeds up to 100 mph.

It’s not intuitive – it takes skill and practice. But when used by a capable operator, it gave hunters a tremendous advantage: The atlatl lets a dart be thrown much faster, much harder, and much farther than a javelin. And, for that matter, a dart thrown from an atlatl is a more effective hunting tool than an arrow in each of three measures: “how hard it hits (kinetic energy), how hard it is to stop (momentum), and how effectively it penetrates (sectional density).”[2] According to one study, Hrdlicka, D. “How Hard Does It Hit? A Revised Study of Atlatl and Dart Ballistics,” The Atlatl, Vol. 16, No. 2, 2002, a dart beats an arrow in each of these three categories. His calculations are beyond the scope of this note, but his conclusions are worth noting:

When an object is in motion, it has kinetic energy. When it strikes something, that energy is transferred. This is the basic force of impact – how hard the weapon strikes the target. . . . Kinetic energy is very dependent on velocity. A bullet, because it is moving so fast, has incredible amounts. A .30-06 has roughly 60 times the kinetic energy of a primitive arrow. And yet Native Americans used those primitive arrows to hunt not only deer, but bison as well. . . [B]oth the light dart and the heavy dart seem weak compared to firearms, but they have more kinetic energy than arrows. . . . . . [T]hey would be sufficient to bring down even the toughest game — assuming it is in the effective range. For an atlatl, the effective range is perhaps 50 yards . . .

While kinetic energy determines how hard an object strikes, it doesn’t determine how far it penetrates. That’s where momentum comes in. . . . Momentum is the tendency of an object in motion to STAY in motion. Anyone who has pushed a car in neutral and then tried to stop it will understand this — the more momentum it has, the more resistance it will take to stop it.. . . Projectiles with a lower momentum, like the arrows, may have trouble penetrating thick hide and can be stopped fairly easily if they hit bone. Projectiles with a lot of momentum, like the spears, will go through hide, flesh, bone, and organs, penetrating until they encounter enough resistance to stop them. More momentum also means the projectile is less likely to be deflected by branches or underbrush, so it can be used in different types of terrain.

In addition, momentum is a factor in “knockdown”. A heavy atlatl dart has enough momentum to knock a 40 pound animal completely off its feet and will definitely affect a larger animal. Objects with less momentum, like the arrows or the .357 magnum, will have a much smaller effect. . . . Darts are much more effective in terms of momentum, even better than the .357 magnum. Mass and velocity are equally important in momentum, and darts have quite a bit of mass. It would take more resistance to stop them, which means they would be more effective at penetrating deeply enough into the target to hit a vital area.

Momentum alone isn’t enough for calculating penetration . . . A Ping-Pong ball thrown at a pop can will bounce off. A BB will go right through. What makes the difference? The sectional density. Even though they may weigh the same, in a BB the weight is much more concentrated. Since it is striking a smaller area on the target, more of the momentum is conserved, and it will penetrate deeper. Other factors being the same, a denser projectile will always penetrate more effectively than a lighter one. . . . Atlatl darts are very effective in terms of sectional density. The weight of the long shaft is concentrated in the small diameter, making them more efficient than either arrows or firearms (even the mighty .30-06). This means that the momentum is conserved better, which means the darts will penetrate better.[3]

Another study noted that a dart thrown properly from an atlatl carries more than four times the kinetic energy of a “modern arrow fired from an efficient modern compound bow” (emphasis added).[4] It is worth noting that the use of the atlatl persisted in many places, even after the invention of the bow and arrow. For example, “in his account of the Desoto expedition to the Southeastern United States in the 16th century Garcilaso de la Vega noted that the spearthrower propelled darts ‘with extreme force, so that it has been known to pass through a man armed with a coat of mail.’”[5]

This power and efficiency helps explain why the atlatl was so successful and so widely used.

The range and power advantage provided by the spearthrower . . . , relative to the thrusting-spear or javelin, could have provided Paleoindian hunters with the ability to successfully penetrate the armor-like hides of mammoths . . . greatly increasing a hunter’s chance for success. Likewise, the device’s portability likely permitted Clovis hunters to avoid alternative big game hunting technologies, such as traps or drives coupled with killing lances, thus maintaining a highly mobile subsistence strategy.[6]

An atlatl and dart offered much more power at a greater distance than could be obtained from a javelin. And, of course, hunting from a distance is a benefit for hunters going after large and potentially dangerous game – mastodons, mammoths – since thrusting a spear at an enraged elephant is very dangerous. Don’t try it at home. Don’t try it anywhere.

It may seem counterintuitive that these long darts, flexing through the air toward the prey would be effective hunting tools, but as one author put it,

For tens of thousands of years, it was the primary hunting weapon on earth. Dart points have been found in mammoth bones, and they have been tested on modern elephant carcasses with impressive results. While it may not be as effective as a rifle, it is certainly effective enough. Just how dead do you need your supper?[7]

In fact, darts thrown by atlatls are so effective that it is interesting to speculate about why that technique was largely supplanted by the use of the bow and arrow. I suspect that it may have something to do with the declining size of prey animals. As mammoths and mastodons and the other giant megafauna became extinct, hunters had to turn to smaller, lighter prey, and it may be that the heavy firepower of an atlatl was no longer necessary.

Atlatls have been widely used around the world, in Europe, the circumpolar regions, southeastern Asia, and North America. Atlatls were in use in Europe over 17,000 years ago, and it was long supposed that atlatls came into North America via the Bering land bridge, described earlier. This would mean that the first people known to have inhabited the Americas, the Clovis people, would have been using atlatls.

But no one could say for sure that that was the case. Although atlatl use has been confirmed in North America going back nine or ten thousand years,[8] there has been no definitive evidence that atlatls were used by the Paleo-Indian culture known at the Clovis People. No one has found an atlatl that old. The atlatls that have been found dated from much more recently, even into the 1400’s, and later.[9] “There is no reason to assume that early migrants to the New World could not have possessed the device, but there is currently no empirical evidence that it was actually used by Paleoindian hunters.”[10]

Recently though, in an ingenious bit of science and research, Dr. Karl Hutchings of Thompson Rivers University in Kamloops, British Columbia, Canada has done a study which permits the strong inference that atlatls were used in North America during the time of the Clovis people, earlier than any fossil evidence demonstrates.

How?

Dr. Hutchings studied patterns of lithic fractures on stone points. That is, he studied the micro features of fracture patterns on stone points. His (and others’) prior research had demonstrated that certain fracture patterns are produced by the force which causes the fractures, i.e. how fast and hard the stone point hit a target.

Dr. Hutchings studied 668 stone points and fragments associated with Paleo-Indian cultures. These were mostly fluted[11] points made of chert, flint, quartz, obsidian, jasper, and chalcedony. “The points were recovered from sites and localities on the edge of the Southern Great Plains, the Southwest, and Far West of North America.[12]

So Hutchings is looking at these points, and sees fracture patterns consistent with a high velocity impact. High enough that the point (attached to a javelin) could not have been thrown by hand. As the study noted,

Fracture velocity data derived from the damaged surfaces of North American Paleoindian points  demonstrate that at least some Paleoindian points were subject to much higher loading rates than can be achieved without mechanical assistance. Since North American archaeologists would generally agree that there is no supporting evidence for the use of the bow and arrow during the Paleoindian Period, the spearthrower is, therefore, indicated.[13]

This is a significant, and very smart finding. As the paper notes, there is no evidence that bow and arrow technology was available to the Clovis people at that time – some thirteen thousand years ago. And there is no known alternate mechanism which could have propelled these points at high enough velocity to have produced the pattern of fractures Dr. Hutchings found. Couple this with the fact that the atlatl was known to have been used in Europe and Asia thousands of years before the time period in question, and the conclusion seems eminently reasonable: The first Americans, the Clovis people were hunting animals – big animals – with atlatls.

 

 

 

 

[1] Illustration courtesy of National Park Service and US army, but found at National Geographic News, http://news.nationalgeographic.com/news/bigphotos/7739559.html

[2] Hrdlicka, D. “How Hard Does It Hit? A Revised Study of Atlatl and Dart Ballistics,” The Atlatl, Vol. 16, No. 2, 2002, http://waa.basketmakeratlatl.com/wp-content/uploads/2013/02/HOW-hard-does-it-hit-revised.pdf

[3] Hrdlicka, D. “How Hard Does It Hit? A Revised Study of Atlatl and Dart Ballistics,” The Atlatl, Vol. 16, No. 2, 2002, http://waa.basketmakeratlatl.com/wp-content/uploads/2013/02/HOW-hard-does-it-hit-revised.pdf

[4] Hutchings, W.K., and Bruchert, L.W., “Spearthrower Performance: Ethnographic and Experimental Research,” Antiquity 71 (1997): 890 – 97, 894.

[5] Hutchings, W.K., and Bruchert, L.W., “Spearthrower Performance: Ethnographic and Experimental Research,” supra, 895.

[6]W. Karl Hutchings, “Finding The Paleoindian Spearthrower: Quantitative Evidence For Mechanically-Assisted Propulsion Of Lithic Armatures During The North American Paleoindian Period.” Journal of Archaeological Science 55 (2015) 34-41; Publ. Elsevier, online, Jan. 3, 2015, p. 35.

[7] Hrdlicka, D. “How Hard Does It Hit? A Revised Study of Atlatl and Dart Ballistics,” The Atlatl, Vol. 16, No. 2, 2002, http://waa.basketmakeratlatl.com/wp-content/uploads/2013/02/HOW-hard-does-it-hit-revised.pdf

[8] “The earliest concrete evidence for the use of the spearthrower in the New World is currently represented by the spearthrower hooks from Warm Mineral Springs, and Marmes Rockshelter. The 9000 to 10,000 year old associated dates suggest that the spearthrower was in use by at least the Early Archaic Sub-Period.” Hutchings, supra, p. 35.

[9] See, for example the map showing the distribution of atlatls found in North America.

https://www.google.com/maps/d/viewer?oe=UTF8&ie=UTF8&msa=0&mid=zJJvPeXR_dPY.ktKC0nDyvz80.

[10]“Perhaps more than any other New World culture, the Clovis Paleoindian complex has been popularly defined by a single artifact form; the fluted Clovis point. While there is no doubt that fluted points were used to dispatch late-Pleistocene megafauna . . . the question remains: how were these points used to bring down such large game? [I]t is not known explicitly whether this weapon took the form of a thrust spear, thrown javelin, or mechanically propelled spearthrower dart, since no hafted fluted points have been recovered to date.” Hutchings, “Finding The Paleoindian Spearthrower: Quantitative Evidence For Mechanically-Assisted Propulsion Of Lithic Armatures During The North American Paleoindian Period,” supra, p. 34.

[11] The fluting is diagnostic of Clovis culture, and its successor, Folsom.

[12]Represented sites and localities include Murray Springs, Naco, Dent, Lehner, Lindenmeier, Folsom, Rio Rancho, Blackwater Draw, Sunshine Well, Tonopah Lake, and the Dietz site (interior citations omitted), as well as many lesser known, and unreported sites and localities.” Hutchings, p. 37.

[13]W. Karl Hutchings, “Finding The Paleoindian Spearthrower: Quantitative Evidence For Mechanically-Assisted Propulsion Of Lithic Armatures During The North American Paleoindian Period.” Journal of Archaeological Science 55 (2015) 34-41; Publ. Elsevier, online, Jan. 3, 2015, p. 35.